Yanqiang Han , Jinjin Li

Machine Learning in Protein Science

Efficient Prediction of Protein Structures and Properties

Wiley-VCH

Date de publication : 2025-01-07


Harness the power of machine learning for quick and efficient calculations of protein structures and properties
Machine Learning in Protein Science is a unique and practical reference that shows how to employ machine learning approaches for full quantum mechanical (FQM) calculations of protein structures and properties, thereby saving costly computing time and making this technology available for routine users.
Machine Learning in Protein Science provides comprehensive coverage of topics including: Machine learning models and algorithms, from deep neural network (DNN) and transfer learning (TL) to hybrid unsupervised and supervised learning Protein structure predictions with AlphaFold to predict the effects of point mutations Modeling and optimization of the catalytic activity of enzymes Property calculations (energy, force field, stability, protein-protein interaction, thermostability, molecular dynamics) Protein design and large language models (LLMs) of protein systems
Machine Learning in Protein Science is an essential reference on the subject for biochemists, molecular biologists, theoretical chemists, biotechnologists, and medicinal chemists, as well as students in related programs of study.

137,15

Ce livre est accessible aux handicaps Voir les informations d'accessibilité

À propos

Éditeur
Collection
n.c
Parution
2025-01-07
Pages
240 pages
EAN papier
9783527352159

Auteur(s) du livre



Caractéristiques détaillées - droits

EAN PDF
9783527842360
Prix
137,15 €
Nombre pages copiables
0
Nombre pages imprimables
240
Taille du fichier
7444 Ko
EAN EPUB
9783527842353
Prix
137,15 €
Nombre pages copiables
0
Nombre pages imprimables
240
Taille du fichier
16333 Ko

Suggestions personnalisées